
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2012; 00:1–23
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme

A new control volume finite element method for the stable and
accurate solution of the drift-diffusion equations on general

unstructured grids.

Pavel Bochev∗† and Kara Peterson

Numerical Analysis and Applications, MS1320, Sandia National Laboratories,
P.O. Box 5800, Albuquerque, New Mexico 87185

SUMMARY

We present a new Control Volume Finite Element Method (CVFEM) for the drift-diffusion equations. The
method combines a conservative formulation of the current continuity equations with a novel definition
of an exponentially fitted elemental current density. An edge element representation of the nodal CVFEM
current density in the diffusive limit motivates this definition. We prove that in the absence of carrier drift
the nodal current is sum of edge currents, which solve one-dimensional diffusion problems, times H(curl)-
conforming edge basis functions. Replacement of the edge diffusion problems by one-dimensional drift-
diffusion equations extends this representation to the general case. The resulting H(curl,Ω)-conforming,
exponentially fitted current (EFC) density field combines the upwind effect from all edges and enables
accurate computation of current density integrals on arbitrary surfaces inside the elements. This obviates
the need for the control volumes to be topologically dual to the finite elements and results in a method
that is stable and accurate on general unstructured finite element grids. This sets apart our approach from
other schemes, such as the Scharfetter-Gummel Box Integration Method, which require topologically dual
grids. Numerical studies of the CVFEM-EFC for a suite of standard advection-diffusion test problems on
nonuniform grids confirms the accuracy and the robustness of the new formulation. Simulation of an n-
channel MOSFET device tests the method in a more realistic setting. Copyright c© 2012 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The drift-diffusion equations are a coupled system of nonlinear Partial Differential Equations
(PDE’s) [21, 19], which model the motion of electrons and holes in semiconductor materials.
Predictive simulation of semiconductor devices depends on the robust, accurate and efficient
numerical solution of these equations. Two desirable properties of numerical schemes for the drift-
diffusion equations are (a) stability in the advection-dominated regime, i.e., when charge drift
velocities dominate their diffusivity, and (b) local conservation of electron and hole current densities.

A standard approach for stabilization of advection-dominated problems is to introduce additional
dissipation into the numerical scheme through artificial diffusion, upwinding or exponential fitting.
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2 P. BOCHEV AND K. PETERSON

The development of the exponentially fitted Scharfetter-Gummel (SG) scheme [25] was a major
breakthrough that enabled stable and accurate numerical solution of the drift-diffusion equations in
one-dimension. Extension of SG to multiple dimensions [16, 12, 26] typically relies on topologically
dual grids†; see the right plot in Fig. 1. For such grids, the area of the dual (control volume) side
times the SG edge current on the primal edge crossing that side gives an accurate approximation
of the current density flux through the boundary of the dual cell. The resulting SG-BIM (Box
Integration Method, or Finite Boxes approach) scheme has excellent stability and is the workhorse
in most modern device simulators [9, 15, 12].

Insofar as conservation of current density is concerned, finite volume and finite element methods
follow different paths. The former integrate the continuity equation on the (topologically dual)
control volumes and apply the Divergence Theorem to transform the volume integrals into surface
integrals. This ensures conservation of current density with respect to the dual control volumes.
On the other hand, conservative finite elements approximate the current density by div-conforming
face elements [6]. The resulting mixed finite element methods [5] have indefinite systems with
more variables than primal Galerkin methods, which approximate only the charge density. However,
primal Galerkin methods do not conserve current density and so, they lack one of the two desirable
properties for device simulations.

The Control Volume Finite Element Method (CVFEM) [3] is an alternative approach that
combines the simplicity of the primal Galerkin method with the local conservation properties
of finite volume methods, without requiring topologically dual grids. The CVFEM approximates
charge densities using the same nodal shape functions as the primal Galerkin method. However, the
“weak” CVFEM equations result from application of the Divergence Theorem to control volumes
surrounding the element vertices, i.e., they resemble finite volume equations.

While the CVFEM is conservative, it still needs some form of stabilization for advection-
dominated problems [20, 28, 29]. In this paper we present a new CVFEM for the drift-diffusion
equations, which uses exponentially fitted H(curl)-conforming currents (CVFEM-EFC) to merge
the exceptional stability of the SG-BIM with the greater flexibility of CVFEM. In a nutshell, we
solve one-dimensional drift-diffusion equations on the edges of the finite element mesh and then
use H(curl)-conforming edge elements [23] to expand the resulting edge current densities into an
elemental current density. In so doing we obtain a method that is essentially equivalent to SG-BIM
on topologically dual grids, yet remains robust and accurate in the absence of this property, because
the elemental current field can be integrated accurately on arbitrary surfaces inside the elements.
Computational studies on non-uniform grids using a suite of standard test problems and a more
realistic n-channel metal-oxide semiconductor field-effect transistor (MOSFET) device confirm this.

To motivate our approach we examine the nodal CVFEM currents in the pure diffusion limit.
Using the fact that nodal and edge elements are part of an exact sequence we prove that in the
absence of carrier drift the nodal current is sum of edge currents from one-dimensional diffusion
problems times H(curl)-conforming edge basis functions. Therefore, the exponentially fitted
H(curl)-conforming current in this paper represents a consistent extension of the nodal current
density.

The use of H(curl)-conforming elements to extend edge currents into an elemental current
density, and independence from explicit stabilization parameters differentiate the CVFEM-EFC
from other stabilized CVFEM formulations [29, 28]. These papers stabilize the CVFEM using the
same perturbation functions as the SUPG method [8]. The resulting CVFEMs inherit the SUPG
stabilization parameter and the quality of their solutions depends critically on the choice of this
parameter. Finding the optimal stabilization parameter for a given PDE configuration remains an

†We remind the reader that two grids in d-dimensions are topologically dual if there is one-to-one correspondence
between their k and d− k-dimensional entities. For example, in three dimensions (d = 3) every primal vertex (k = 0)
corresponds to a unique dual cell (3− 0 = 3); every primal edge (k = 1) corresponds to a unique dual face (3− 1 = 2),
every primal face (k = 2) corresponds to a unique dual edge (3− 2 = 1), and every primal cell (k = 3) corresponds
to a unique dual vertex (3− 3 = 0). In two dimensions (d = 2) the correspondence is between primal vertices (k = 0)
and dual cells (2− 0 = 2), primal sides (k = 1) and dual sides (2− 1 = 1) and primal cells (k = 2) and dual vertices
(2− 2 = 0).
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CVFEM FOR THE DRIFT-DIFFUSION EQUATIONS 3

open problem. Some of the parameters that enter its definition are not known exactly [13], and
different solution features, such as internal discontinuities and boundary layers, require different
definitions of this parameter [14].

Our brief survey deliberately omits approaches which use the primal Galerkin formulation of
the drift-diffusion equations because it lacks the second desirable property, i.e., the local current
conservation. We refer the interested readers to [27] (extension of SUPG to drift-diffusion),
[1, 24, 32, 31] (exponentially fitted conforming finite elements), and [30] (stabilized Generalized
Finite Element) for examples and further details. Likewise, we skip mixed methods for drift-
diffusion because of their more complicated computational structure, which does not allow simple
reuse of an existing primal Galerkin code infrastructure. We refer to [6, 7] for more information
about these methods.

The rest of this section reviews the relevant notation and the model drift-diffusion equations. The
core of this paper is Section 2 where we motivate and define the CVFEM-EFC formulation. Section
3 briefly discusses implementation of the method and Section 4 uses Cartesian grids to shed some
light on the distinctions between CVFEM-EFC and SG-BIM. Section 5 presents numerical results
and Section 6 summarizes our conclusions.

1.1. Notation

In this paper Ω is a bounded region in <n, n = 2, 3 with Lipschitz-continuous boundary ∂Ω. The
Neumann and Dirichlet parts of the boundary are ΓN and ΓD, respectively. We use the standard
notation H1(Ω) for the Sobolev space of order one, L2(Ω) for the space of all square integrable
functions, and H(curl,Ω) for the space of all square integrable vector fields whose curl is also
square integrable. Lower case Roman and Greek letters denote scalar quantities and bold face
symbols are vector quantities. The meaning of the symbol | · | varies with the context and can be
Euclidean length, domain measure, or cardinality of a finite set.

Throughout the paper Kh(Ω) is a conforming finite element partition of Ω into elements Ks with
size hs and barycenter bs. The average element size in Kh(Ω) is h > 0. The vertices of the mesh
are vi and eij is a mesh edge with endpoints vi and vj . The midpoint and the length of eij are

mij =
vi + vj

2
and hij = |vi − vj | ,

respectively. The vertices, edges, sides, and elements intersecting with entity Ξ are V (Ξ), E(Ξ),
S(Ξ), and K(Ξ), respectively. For example, V (Ω) is the set of all mesh vertices, E(Ω) is the
set of all mesh edges, V (Ks) are the vertices of element Ks, E(vi) are all edges having vi as a
vertex, K(eij) are the elements sharing eij , and so on. Note that in two-dimensions E(Ξ) = S(Ξ).
Selection of vertex ordering induces orientation of eij ∈ E(Ω):

σij =

{
−1 if vi is the first vertex of eij , i.e., the vertex order is vi → vj

1 if vi is the second vertex of eij , i.e., the vertex order is vi ← vj
(1)

The unit tangent on eij follows the edge orientation

tij = σij
vi − vj
|vi − vj |

,

and always points towards the second vertex of the edge.
We refer to Fig. 1 for a representative control volume Ci associated with vertex vi on an

unstructured grid. The set of all control volumes forms a dual grid K ′h(Ω) with dual vertices V ′,
dual edgesE′(Ω), and dual sides S′(Ω). Every primal edge eij corresponds to a dual control volume
side ∂Cij , which is comprised of facets ∂Csij = ∂Cij ∩Ks, ∀Ks ∈ K(eij) that is,

∂Cij =
⋃

Ks∈K(eij)

∂Csij .

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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Figure 1. On quadrilateral grids we connect the barycenter br of every Kr ∈ K(vi) with the centers mik,
mil of its two sides connected to vi. The resulting control volume Ci is an octagon. The two sides ∂Csij and
∂Ctij of this octagon, which connect to mij , are the facets of the control volume side ∂Cij dual to edge eij :
∂Cij = ∂Csij ∪ ∂C

t
ij . On Cartesian grids (right plot) the control volumes Ci form a topologically dual grid

and the unit normals to ∂Csij and ∂Ctij are parallel to eij . On nonuniform grids (left plot) these normals are
not parallel to eij and Ci are not topologically dual to the elements on the primal mesh.

For example, in two-dimensions K(eij) has two elements and each dual side has two facets:

∂Cij = ∂Csij ∪ ∂Ctij , Ks,Kt ∈ K(eij) .

The number of dual sides ∂Cij always equals the number of edges in E(vi).
The facet ∂Csij of ∂Cij has barycenter ms

ij and nsij is its outer unit normal at ms
ij . A fundamental

property of topologically dual grids is that

nsij = ntij = nij = ±tij ∀Ks,Kt ∈ K(eij) . (2)

In other words, the primal edge eij is perpendicular to all facets of its dual side ∂Cij .
Suppose Ci corresponds to a vertex on the Neumann boundary, i.e., vi ∈ ΓN . Then

∂Ci = ∂Ċi ∪ ∂CNi ; ∂Ċi = ∂Ci ∩ Ω̇ and ∂CNi = ∂Ci ∩ ΓN . (3)

The CVFEM-EFC uses the lowest-order H1(Ω)-conforming and H(curl,Ω)-conforming finite
element spaces. In what follows, Gh(Ω) is theC0 piecewise linear, bilinear or trilinear finite element
space and Ch(Ω) is the lowest-order Nedelec edge element space [22]. The latter contains piecewise
polynomial vector fields whose tangential component is continuous along the element edges, thus
the monicker “edge elements”. The basis of Gh(Ω) is {Ni}, vi ∈ V (Ω). We assume that Ni is the
standard nodal, or Lagrangian basis:

Ni(vj) = δji .

The basis of Ch(Ω) is { ~Wij}, eij ∈ E(Ω). Two standard unisolvent sets of degrees of freedom for
the lowest-order Nedelec element are the mean of the tangent component of ~Wij along an edge,
and the value of this component at the edge midpoint. In this paper we use the former, that is, basis
functions‡ have the property ∫

ers

~Wij · trsd` = δrsij . (4)

With this choice at the edge midpoint

~Wij · trs
∣∣∣
mrs

=
δrsij
hrs

. (5)

‡The basis functions corresponding to the two unisolvent sets differ only by a scaling factor.
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CVFEM FOR THE DRIFT-DIFFUSION EQUATIONS 5

We note that ~Wij · tij > 0, i.e., orientation of the edge basis function ~Wij always follows the
orientation of the associated edge eij .

When ΓD is non-empty we also need the subspace Gh
D(Ω) of all functions in Gh(Ω), which

vanish on ΓD, and the subspace Ch
D(Ω) of all fields in Ch(Ω) whose tangential component vanishes

on ΓD.

1.2. The drift-diffusion equations

The nonlinear system of PDEs

∇ · (λ2E)− (p− n+ C) = 0 and E = −∇ψ in Ω (6)
∂n

∂t
−∇ · Jn +R(ψ, n, p) = 0 and Jn = (µnE)n+Dn∇n in Ω (7)

∂p

∂t
+∇ · Jp +R(ψ, n, p) = 0 and Jp = (µpE)p−Dp∇p in Ω (8)

models the carrier transport in semiconductor materials in terms of the concentrations n and p of the
electrons and the holes, respectively [26]. We use the standard notation λ, ψ, E, Jn, and Jp for the
minimal Debye length of the device, electric potential, electric field, and electron and hole current
densities, respectively. The functions Dn and Dp specify carrier’s diffusivity, while µn and µp are
their mobilities. The system (6)–(8) is augmented with the boundary conditions

n = nD and p = pD on ΓD (9)
Jn · n = 0 and Jp · n = 0 on ΓN . (10)

Equation (6) is a simplified model of the electric field in the device and (7)–(8) are the continuity
equations for the electron and hole current densities. The terms µnnE and µppE are advective fluxes,
Dn∇n and Dp∇p are diffusive fluxes, and un = µnE and up = µpE are carriers drift velocities.
When Dn � un and/or Dp � up, the drift-diffusion equations are advection dominated and their
solutions can develop internal and/or boundary layers.

2. FORMULATION OF THE CVFEM-EFC

The CVFEM-EFC is a marriage of a base CVFEM formulation with a new edge element extension
of one-dimensional exponentially fitted edge current densities into the elements. To present the
formulation it suffices to consider a single carrier continuity equation. We choose to work with (7)
and treat ψ, E = −∇ψ, and p as given functions. Thus, we focus on the following boundary value
problem for the electron concentration n:{

∂n

∂t
−∇ · Jn +R(ψ, n, p) = 0 and Jn = µnnE +Dn∇n in Ω

n = g on ΓD and Jn · n = f on ΓN .
(11)

For the sake of generality we allow inhomogeneous Dirichlet and Neumann conditions.

2.1. The base CVFEM formulation

Integration of the first equation in (11) on control volumes Ci corresponding to vertices in Ω ∪ ΓN
is the first step in the definition of the base CVFEM [3]. The second step transforms the integrals
using the Divergence Theorem:∫

Ci

∂n

∂t
dV −

∫
∂Ċi

Jn · n dS = −
∫
Ci

R(ψ, n, p)dV +

∫
∂CN

i

f dS ; ∀vi ∈ Ω̇ ∪ ΓN (12)

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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6 P. BOCHEV AND K. PETERSON

Approximation of the electron concentration n by a finite element function§ nh(x, t) ∈ Gh
D(Ω) is

the final third step, which yields the semidiscrete in space CVFEM formulation∫
Ci

∂nh
∂t

dV −
∫
∂Ċi

Jn(nh) · n dS = −
∫
Ci

R(ψ, nh, p)dV +

∫
∂CN

i

f dS ; ∀vi ∈ Ω̇ ∪ ΓN .

(13)
Where the vector field

Jn(nh(x, t)) = µnnh(x, t)E +Dn∇nh(x, t)

=
∑

vj∈Ω̇∪ΓN

nj(t) (µnNjE +Dn∇Nj) =
∑

vj∈Ω̇∪ΓN

nj(t)Jn(Nj)
(14)

is finite element approximation of the electron current density Jn and Jn(Nj) are nodal current
densities. Selection of a time stepping scheme completes the definition of the fully discrete base
CVFEM. Because our focus is on the spatial discretization we leave this choice open and work with
the semi-discrete equation (13). Using the nodal basis expansion

nh(x, t) =
∑

vj∈Ω̇∪ΓN

nj(t)Nj(x) +
∑

vj∈ΓD

g(vj , t)Nj(x) (15)

we see that (13) is equivalent to∑
vj∈Ω̇∪ΓN

∂nj(t)

∂t

∫
Ci

Nj dV −
∑

vj∈Ω̇∪ΓN

nj(t)

∫
∂Ċi

Jn(Nj) · n dS

= −
∫
Ci

R(ψ, nh, p)dV +

∫
∂CN

i

f dS +
∑

vj∈ΓD

g(vj , t)

∫
∂Ċi

Jn(Nj) · n dS .

(16)

When (11) is advection-dominated the base CVFEM can develop the same spurious oscillations that
plague primal Galerkin methods for (11). The root cause for this behavior is the inability of the nodal
finite element current density (14) to represent accurately the carrier transport between neighboring
nodes when the mesh does not resolve solution features such as boundary and/or internal layers.
Stabilization of the base CVFEM is an effective alternative to mesh refinement, which may be
prohibitively expensive when Dn � µnE.

2.2. The Scharfetter-Gummel procedure

To stabilize the base CVFEM (12) we propose to replace the nodal current density Jn(Nj) by an
exponentially fitted current density JE , which models more accurately the solution behavior of (11)
when Dn � µnE.

The classical SG procedure computes exponentially fitted estimates of Jn along the primal mesh
edges and is the starting point for the definition of JE . Extension of SG to multiple dimensions in
SG-BIM formulations critically depends on property (2) of topologically dual grids, i.e., the fact
that the primal edges are perpendicular to the dual sides. In contrast, we extend one-dimensional
edge current densities to an elemental current density JE using H(curl)-conforming elements,
thereby rendering this condition unnecessary. To explicate the distinctions between our approach
and methods that require topologically dual Kh(Ω) and K ′h(Ω), we review a representative SG-
BIM formulation on rectangular grids¶ for which K ′h(Ω) is also rectangular. The right plot in Fig. 1
shows a typical patch of rectangular elements and its dual control volume.

§Note that nh(x, t) is the same as in a primal Galerkin method.
¶Voronoi-Delaunay grids provide an alternative setting for SG-BIM in two-dimensions. The dual Voronoi cells are
hexagons whose sides are perpendicular to the sides of the primal triangles.
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Formulation of the SG-BIM relies on the same “weak” equations (12) as the base CVFEM, but
uses different approximations for the electron concentration and current density. The former is
represented by a constant ni on each dual cell Ci and the latter - by a constant Jij on each dual
side ∂Cij . It is convenient to think of ni as an approximation of n(x, t) at vertex vi. Likewise, Jij
approximates the outgoing current Jn · nij at the center mij of ∂Cij . Application of the midpoint
rule to the volume and surface integrals in (12) yields the semi-discrete in space SG-BIM equations

∂ni(t)

∂t
|Ci| −

∑
∂Cij∈∂Ċi

Jij |∂Cij | = −Ri|Ci|+
∑

∂CN
ij∈∂CN

i

fi|∂CNij | ∀vi ∈ Ω̇ ∪ ΓN

ni(t) =

(∫
Ci

g(x, t)dV

)
/|Ci| ∀vi ∈ ΓD

(17)

The special relationship (2) that holds on topologically dual grids is the “trick” that enables
straightforward extension of SG to (17). Owing to (2)

Jij ≈ Jn · nij
∣∣∣
mij

= ±Jn · tij
∣∣∣
mij

.

In other words, on topologically dual grids an approximation of the current density along a primal
edge eij simultaneously approximates the outgoing current at the center of its corresponding dual
side ∂Cij . The SG procedure estimates the edge current, thereby providing the necessary value
for Jij in (17). To this end, the SG approach solves a simplified, one-dimensional version of
the continuity equation (11) on the primal edges. The resulting approximation of the electron
concentration along eij incorporates key solution features in the advection-dominated regime and
yields a better estimate of the outgoing current than, e.g., the nodal current Jn(Nj).

Let eij be an arbitrary primal edge. Without loss of generality we may assume that its orientation
σij = −1, i.e., the order of its vertices is vi → vj . The natural length parameter is 0 ≤ s ≤ hij .
Along eij we consider the following stationary one-dimensional boundary value problem (BVP)

dJij
ds

= 0; Jij = µnEijn(s) +Dn
dn(s)

ds

n(0) = ni and n(hij) = nj

(18)

where Eij = E · tij and the electron concentrations at the endpoints of eij are the boundary data.
To estimate Jij we make the following simplifying assumptions. First, µn and Dn are constants
connected through the Einstein relation

µn =
Dn

β
where β =

kBT

q
, (19)

q is the electron charge, kB is the Boltzman constant and T is the absolute temperature. Second, the
electric potential ψ varies linearly along eij . Consequently,

Eij = − (ψj − ψi)
hij

; ψi = ψ(vi); ψj = ψ(vj) .

Under these assumptions the exact solution of (18) yields the classical SG formula‖ for the edge
current densities:

Jij =
aijDn

hij

[
nj
(

coth(aij) + 1
)
− ni

(
coth(aij)− 1

)]
(20)

‖The alternate formula Jij = Dn/hij
[
njB(−2aij)− niB(2aij)

]
, whereB(x) = x/(exp(x)− 1), is less reliable than

(20) in finite precision arithmetic.
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Figure 2. Comparison of the outgoing current density flux approximations by SG-BIM (23) (left pane)
and the alternative formula (24) (right pane), when Kh(Ω) and K′h(Ω) are not topologically dual. The
red diamonds and the red arrows indicate the locations and the directions for the estimates of the outgoing
current density, respectively. The SG-BIM continues to use estimates Jij along the primal edges even though

the unit normals on the facets are not parallel anymore to these edges.

where
aij = − (ψj − ψi)

2β
=
hijEij

2β
(21)

is the edge Reynolds number. In summary, (20) produces the following estimate of the outgoing flux
through a control volume boundary:∫

∂Ċi

J · n dS ≈
∑

∂Cij∈∂Ċi

aijDn

hij

[
nj
(

coth(aij) + 1
)
− ni

(
coth(aij)− 1

)]
|∂Cij | (22)

Inserting (22) into (17) completes the definition of SG-BIM.

2.3. Exponentially fitted edge element current density

When Kh(Ω) and K ′h(Ω) are not topologically dual the SG-BIM formulation is prone to significant
losses of accuracy. Examples in Section 5.1 demonstrate these losses. To explain the root cause for
the diminished accuracy of (17) on unstructured grids we write the approximate surface integrals in
SG-BIM as a sum over the dual side’s facets:∫

∂Ċi

J · n dS ≈
∑

∂Cij∈∂Ċi

Jij |∂Cij | =
∑

∂Cij∈∂Ċi

∑
∂Cs

ij∈∂Cij

Jij |∂Csij | . (23)

Because (2) holds only for topologically dual grids, the unit normals to the facets ∂Csij are not
parallel to the primal edge eij . Consequently, if Kh(Ω) is highly unstructured, the edge current
density Jij is a poor estimate of Jn · nsij at the center ms

ij of facet ∂Csij ; see Fig. 2. Therefore,
accurate approximation of the integral on ∂Ci must account for the distinct normal directions on
each facet, as shown on the right in Fig. 2. For example, a better alternative to (23) is the formula∫

∂Ċi

J · n dS =
∑

∂Cij∈∂Ċi

∑
∂Cs

ij∈∂Cij

∫
∂Cs

ij

Jn · n dS ≈
∑

∂Cij∈∂Ċi

∑
∂Cs

ij∈∂Cij

Jsij |∂Csij | (24)

where Jsij approximates Jn · nsij at ms
ij .

Implementation of integration rules such as (24) depends on the availability of accurate estimates
of the current density inside the elements. Calculation of generation rates of electronsGn = αJn due
to impact ionization [16] and generalized mobility models [17] are two other examples that require
current density inside the elements. However, the weighted average elemental estimates of Jn from
SG edge currents in [16, 17] target exclusively SG-BIM schemes on Voronoi-Delaunay grids. As a
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Prepared using nmeauth.cls DOI: 10.1002/nme



CVFEM FOR THE DRIFT-DIFFUSION EQUATIONS 9

result, consistent extension of these estimates to general unstructured grids may be problematic and
has not been considered.

Our approach relies on H(curl)-conforming (edge) finite elements to expand edge currents (20)
into an exponentially fitted elemental current density JE ∈ Ch

D(Ω). Because edge element shape
functions are available for a wide range of cell shapes, including polygons [11], this strategy
is applicable to an equally wide range of unstructured grids Kh(Ω) without requiring that the
associated control volume grid K ′h(Ω) is topologically dual.

To motivate the use of edge elements we examine the base CVFEM (13) in the absence of carrier
drift and establish a relationship between the nodal current Jn(nh) and the edge currents (20).

Theorem 1
Assume that carrier drift velocity µnE = 0. Then

Jn(nh) =
∑

eij∈E(Ω)

Dn(nj − ni) ~Wij . (25)

Proof. When µnE = 0 the nodal current density (14) reduces to

Jn(nh) = Dn∇nh =
∑

vi∈V (Ω)

Dnni∇Ni .

On the other hand, the nodal space Gh
D(Ω) and the edge element space Ch

D(Ω) belong to an exact
sequence (finite element DeRham complex) [2] and so, ∇Ni ∈ Ch

D(Ω). Moreover, in the lowest-
order case there holds [4]

∇Ni =
∑

eij∈E(vi)

σij ~Wij . (26)

Combining these two identities yields the representation

Jn(nh) =
∑

vi∈V (Ω)

Dnni

 ∑
eij∈E(vi)

σij ~Wij

 .

Without loss of generality we may assume that σij = −1, i.e., that the vertex order on eij is vi → vj .
Then, after reordering the terms in the above formula

Jn(nh) =
∑

eij∈E(Ω)

Dn(nj − ni) ~Wij . (27)

This concludes the proof. 2

Corollary 1
Assume that Dn is constant along the edges. Under the hypothesis of Theorem 1

Jn(nh) =
∑

eij∈E(Ω)

hijJ
0
ij
~Wij , (28)

where J0
ij is the solution of (18) in the absence of carrier drift.

Proof. In the absence of carrier drift µnEij = 0 and equation (18) reduces to
dJ0

ij

ds
= 0; J0

ij = Dn
dn(s)

ds

n(0) = ni and n(hij) = nj .

(29)

A straightforward calculation shows that

n(s) = ni + s
nj − ni
hij

and J0
ij = Dn

nj − ni
hij

.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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Therefore, hijJ0
ij = Dn(nj − ni), which completes the proof. 2

The edge current densities J0
ij are the Scharfetter-Gummel estimates of Jn in the absence of

carrier drift. Corollary 1 establishes that in the pure diffusion limit the nodal current density is sum
of the edge element basis functions times these estimates. This relationship is the departure point
for the consistent extension of the edge currents (20) into an elemental current density JE ≈ Jn.
Specifically, in the general drift-diffusion case we set

JE =
∑

eij∈E(Ω)

hijJij ~Wij , (30)

where the SG formula (20) defines the coefficients Jij . The resulting exponentially fitted current
density field

JE =
∑

eij∈E(Ω)

aijDn

[
nj
(

coth(aij) + 1
)
− ni

(
coth(aij)− 1

)]
~Wij (31)

belongs to H(curl,Ω) and is defined on any mesh that supports construction of Nedelec edge
elements. To complete the definition of CVFEM-EFC we replace the nodal current density in the
base CVFEM (13) by JE :

∫
Ci

∂nh
∂t

dV −
∫
∂Ċi

JE · n dS = −
∫
Ci

R(ψ, nh, p)dV +

∫
∂CN

i

f dS ; ∀i ∈ Ω̇ ∪ ΓN . (32)

We conclude this section with a formal proof that JE is a consistent extension of the representation
(28), which motivates its definition (30).

Lemma 1
Assume that Dn and µn are constant along the edges, E = −∇ψ, the electric potential ψ varies
linearly between the nodes, un = µnE and (30) defines JE . Then

lim
un→0

JE = Jn(nh) . (33)

Proof. If un → 0 we must have Eij → 0 for all eij and from (21) it follows that aij → 0 as well.
It is straightforward to see that

lim
aij→0

aij coth(aij) = 1 ,

and so, for every eij

lim
aij→0

Jij = lim
aij→0

aijDn

hij

[
nj
(

coth(aij) + 1
)
− ni

(
coth(aij)− 1

)]
=
Dn

hij
(nj − ni) = J0

ij .

This concludes the proof. 2

Remark 1
The representation of JE in (30) is an instance of a general approach for defining elemental current
fields from lower-dimensional estimates. The idea is to seek an H(curl)-conforming approximation
of the current density

Jn ≈
∑
α

J̃α ~W
r
α , (34)

where { ~W r
α} span an edge element space of order r, and J̃α approximate Jn on lower-dimensional

entities α of the element. For the lowest-order Nedelec element ~Wij the sum (34) specializes to

Jn ≈
∑

eij∈E(Ω)

J̃ij ~Wij ,

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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and the normalization property (5) yields the relation

Jn · tkl
∣∣∣
mkl

≈
∑

eij∈E(Ω)

J̃ij

(
~Wij · tkl

) ∣∣∣
mkl

=
J̃kl
hkl

.

The latter implies
J̃kl ≈ hkl (Jn · tkl)

∣∣∣
mkl

. (35)

Thus, the lowest-order edge element formula (34) allows us to construct an elemental current density
from one-dimensional estimates of Jn · tij at edge midpoints. In particular, setting J̃kl = hijJij ,
yields the exponentially fitted approximation (30). A forthcoming paper will examine the possibility
to obtain higher-order elemental estimates of Jn from one-dimensional currents by using (34) with
higher-order Nedelec elements.

3. IMPLEMENTATION

The expanded form of the CVFEM-EFC formulation (32) is∑
vj∈Ω̇∪ΓN

∂nj(t)

∂t

∫
Ci

Nj dV −
∑

ekl∈E(Ω)

Jkl

∫
∂Ċi

~Wkl · n dS = −
∫
Ci

R(ψ, nh, p)dV +

∫
∂CN

i

f dS .

(36)
With an appropriate discretization in time (36) is equivalent to a linear system of algebraic equations
K~n = ~f for the unknown nodal coefficients ~n = {nj}j∈Ω̇∪ΓN

of the discrete carrier concentration
(15). The rows of the global discretization matrix K correspond to control volumes Ci surrounding
the vertices vi associated with unknown nodal values ni.

In this section we explain computation of the contributions from the control volume boundary
integrals in (36) to the discretization matrix K. Computation of the integrals on Ci is
straightforward. To this end, it is instructive to rewrite (30) in a “vertex” form by collecting all
terms that share the same nodal degree of freedom. For a vertex vj these terms correspond to the
edges inE(vj), providing the following equivalent representation of the exponentially fitted current:

JE =
∑

vj∈Ω̇∪ΓN

∑
ejk∈E(vj)

σjkajkDn

[
nj(coth(ajk) + σjk)

]
~Wjk . (37)

It is now easy to see that the contribution from the second term in (36) to Kij is

Kij ←
∑

ejk∈E(vj)

σjkajkDn

[
nj(coth(ajk) + σjk)

] ∫
∂Ċi

~Wjk · n dS .

Typically, Kij is assembled from element matrices Kr
ij . The integrals on the facets of ∂Ci

belonging to an element Kr are the contributions from the control volume boundary integral to
the element matrices Kr

ij :

Kr
ij ←

∑
ejk∈E(vj)∩E(Kr)

∑
∂Cr

im∈∂Ci∩Kr

σjkajkDn

[
nj(coth(ajk) + σjk)

] ∫
∂Cr

im

~Wjk · n dS . (38)

For example, if the mesh is comprised of quadrilateral elements, the control volumes have two facets
inside each element and every vertex is attached to two edges of Kr; see Figure 3. In this case the
element contribution (38) has four terms. Using the notation in Figure 3 these terms are

Kr
ij ←


σjlajlDn

[
nj(coth(ajl) + σjl)

](∫
∂Cr

ij

~Wjl · ndS +

∫
∂Cr

ik

~Wjl · ndS

)
+

σjiajiDn

[
nj(coth(aji) + σji)

](∫
∂Cr

ij

~Wji · ndS +

∫
∂Cr

ik

~Wji · ndS

)

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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W jl
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Figure 3. Assembly of the element contribution (38) to Kr
ij on quadrilateral grids. The control volume Ci

has two facets in Kr: ∂Ci ∩Kr = ∂Crik ∪ ∂C
r
ij (black lines). The vertex vj corresponding to the unknown

nj is attached to two edges: E(vj) ∩ E(Kr) = {ejl, eji} (red lines). As a result, (38) has four different
terms corresponding to surface integrals of the two basis functions associated with ejl and eji (the red

arrows) on the two control volume facets.

If a nodal coefficient nj corresponds to a vertex on the Dirichlet boundary ΓD, the resulting terms
contribute to the right hand side ~f of the linear system. Finally, we note that practical computation of
the element contributions to K requires suitable cubature rules for the volume and surface integrals
in (36).

4. COMPARISON WITH SG-BIM ON CARTESIAN GRIDS

Comparison of CVFEM-EFC and SG-BIM on uniform Cartesian grid Kh(Ω) further clarifies the
distinctions between the two methods. Because the dual K ′h(Ω) is also uniform Cartesian, it suffices
to consider a single control volume Ci; see Fig. 4. For simplicity, we assume that all elements in
the patch defining the control volume are unit squares and orient their edges to match the outer unit
normal on the control volume side to which they contribute currents.

Since all elements are identical we compute their contributions once using the lower right element
Kr with vertices vi, vj , vk, vl and edges eij , ejk, elk, eil with orientations σij = σjk = σlk = σil =
−1. Without loss of generality we place the origin at vj so that Kr = [0, 1]× [0, 1]. As a result, the
edge basis functions for the vertical edges elk and eij are

~Wij = −
(

0
1

)
(1− x); ~Wlk = −

(
0
1

)
(x);

and the basis functions for the horizontal edges ejk and eil are

~Wjk =

(
1
0

)
(1− y); ~Wil =

(
1
0

)
(y) .

Taking into consideration that the edges of Kr have unit lengths, (30) specializes to

JE =
∑

eij∈E(Kr)

Jij ~Wij =

(
1
0

)[
(1− y)Jjk + yJil

]
−
(

0
1

)[
(1− x)Jij + xJlk

]
(39)

Because ~Wjk and ~Wil are parallel to facet ∂Crij , and the midpoint rule is exact for linear functions∫
∂Cr

ij

JE · ndS = |∂Crij |
(
JE · nrij

)∣∣∣
mr

ij

=
1

2

[
(1− x)Jij + xJlk

]∣∣∣
x=0.25

=
3

8
Jij +

1

8
Jlk
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Figure 4. Notation for a patch of square elements and its control volume. Orientation of edge basis functions
matches the outer normal direction on the control volume sides. Stencils of CVFEM-EFC and SG-BIM in

the pure diffusion limit.

Likewise, because ~Wij and ~Wlk are parallel to ∂Cril,∫
∂Cr

il

JE · ndS = |∂Cril|
(
JE · nril

)∣∣∣
mr

il

=
1

2

[
(1− y)Jjk + yJil

]∣∣∣
y=0.75

=
3

8
Jil +

1

8
Jjk

Combining the facet integrals from all elements results in the approximation∫
∂Cij

J · ndS ≈ 1

8
Jqp +

3

4
Jij +

1

8
Jlk and

∫
∂Cim

J · ndS ≈ 1

8
Jqr +

3

4
Jim +

1

8
Jln

for the horizontal sides of the control volume, and∫
∂Cil

J · ndS ≈ 1

8
Jmn +

3

4
Jil +

1

8
Jjk and

∫
∂Ciq

J · ndS ≈ 1

8
Jmr +

3

4
Jiq +

1

8
Jjp

for its vertical sides. In contrast, on the horizontal sides of Ci the SG-BIM approximation of the
outgoing current flux is ∫

∂Cij

J · ndS ≈ Jij and
∫
∂Cim

J · ndS ≈ Jim

and on the vertical sides this approximation is∫
∂Cil

J · ndS ≈ Jil and
∫
∂Ciq

J · ndS ≈ Jiq .

It is worthwhile to compare these formulas in the pure diffusion limit when Jij = J0
ij = Dn(nj −

ni). It is easy to see that in this case the CVFEM-EFC yields the nine-point stencil for the Laplacian
on the left in Fig. 4, whereas SG-BIM generates the classical five point stencil shown on the right in
the same figure. In the general case, CVFEM-EFC and SG-BIM correspond to exponentially fitted
versions of these stencils.

5. NUMERICAL RESULTS

Section 5.1 examines the accuracy and robustness of the CVEM-EFC using a suite of advection test
problems on uniform and non-uniform grids. Section 5.2 simulates a metal-oxide semiconductor
field-effect transistor (MOSFET) to test the method in a more realistic setting.

5.1. Comparative numerical study

The main objective is to demonstrate that the CVFEM-EFC formulation (32) successfully merges
the exceptional stability of the classical SG scheme with the generality and the robustness of the

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
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14 P. BOCHEV AND K. PETERSON

CVFEM. We also want to illustrate and document the severe loss of accuracy in SG-BIM when
Kh(Ω) and K ′h(Ω) are not topologically dual. To this end we use a suite of standard test problems
to compare the numerical performance of CVFEM-EFC and SG-BIM on a variety of quadrilateral
grids Kh(Ω). The control volume finite element method with streamline upwinding (CVFEM-SU)
[29, 28] provides a benchmark for this comparison. The classical SUPG [8] motivates addition of a
streamline diffusion term to the nodal current density

JSU = Jn(nh) + τh(µnE)∇ · ((µnE)nh) , (40)

which defines the CVFEM-SU. The streamline upwind current (40) depends on the stabilization
parameter τh. The paper [29] recommends the value

τh

∣∣∣
Ks

=

(
cothPes −

1

Pes

)
hs

2|µnE|
, P es =

|µnE|hs
2Dn

; ∀Ks ∈ Kh(Ω) , (41)

which we use in our experiments.

5.1.1. Computational grids In this section Ω is the unit square [0, 1]× [0, 1] with boundary Γ =
ΓB ∪ ΓT ∪ ΓL ∪ ΓR, where

ΓB = {(x, y) | 0 ≤ x ≤ 1; y = 0}; ΓT = {(x, y) | 0 ≤ x ≤ 1; y = 1}

ΓL = {(x, y) | 0 ≤ y ≤ 1;x = 0}; ΓR = {(x, y) | 0 ≤ y ≤ 1;x = 1} .

The grid Kh(Ω) is logically rectangular but not necessarily uniform partition of Ω into Nx ×Ny
quadrilateral elements. Figure 1 shows the construction of the dual grid K ′h(Ω). Coordinate maps

xij = x(ξi, ηj , γ), yij = y(ξi, ηj , γ), 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny , (42)

where γ is real parameter, and

ξi =
i

Nx
, i = 0, . . . , Nx; and ηj =

j

Ny
, j = 0, . . . , Ny (43)

are the initial uniform grid coordinates, specify the positions of the vertices in Kh(Ω). Our study
uses four different families of grids.

Uniform grids. The coordinate maps x(ξi, ηj , γ) = ξi and y(ξi, ηj , γ) = ηj define a Nx ×Ny
uniform grid Kh(Ω). The control volume grid K ′h(Ω) is topologically dual to Kh(Ω).

Randomly perturbed grids. Let rx, ry be uniformly distributed random numbers in [−1, 1]. The
coordinate maps

x(ξi, ηj , γ) = ξi + 0.25h(rxh
γ); y(ξi, ηj , γ) = ηj + 0.25h(ryh

γ) , γ ≥ 0 (44)

define an O(hγ) random perturbation of the initial Nx ×Ny uniform grid. Increasing γ decreases
the level of perturbation and makes Kh(Ω) and K ′h(Ω) closer to being topologically dual. In the
tests we use γ = 0, 1, 2. Figure 5 shows the corresponding O(1), O(h) and O(h2) grids.

Tensor product grids. The coordinate maps

x(ξ, η, γ) = (1− α(γ))ξ + α(γ)ξ3; y(ξ, η, γ) = (1− α(γ))η + α(γ)η2; α(γ) =
sin(4πγ)

2
, (45)

where 0 ≤ γ ≤ 1, generate a sequence of rectangular, affine tensor-product grids Kh(Ω); see Fig. 6.
The control volume grid K ′h(Ω) is topologically dual to Kh(Ω).
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Figure 5. Examples of 10× 10 randomly perturbed grids. Left pane: O(1) grid. Center pane: O(h) grid.
Right pane: O(h2) grid. The O(h2) grid is the closest to the initial uniform grid and its dual K′h(Ω) is the
closest to being topologically dual to Kh(Ω). Conversely, the O(1) grid and its associated control volume

grid deviate most from being topologically dual.
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Figure 6. Left pane: 16× 16 tensor product grid corresponding to (45) with γ = 0.1. Center pane: 16× 16
smooth grid corresponding to (46) with γ = 0.1. Right pane: 16× 16 smooth grid corresponding to (46)
with γ = 0.5. The tensor product grids have topologically dual control volume grids K′h(Ω), whereas the

smooth grids do not.

Smooth non-afine grids. The coordinate maps

x(ξ, η, γ) = ξ + α(γ) sin(2πξ) sin(2πη); y(ξ, η, γ) = η + α(γ) sin(2πξ) sin(2πη) , (46)

where 0 ≤ γ ≤ 1 and

α(γ) =

{
γ/5 if 0 ≤ γ ≤ 0.5

(1− γ)/5 if 0.5 < γ ≤ 1.0
,

define non-affine grids Kh(Ω) for which the control volume grid K ′h(Ω) is not topologically dual to
Kh(Ω).

Figure 6 shows examples of tensor product and smooth non-affine grids. We refer to [18] for
proof that the maps (45) and (46) generate valid grids for any 0 ≤ γ ≤ 1.

5.1.2. Test problems The examples in this section specify steady-state solutions of the governing
equations (11). In all examples ΓN = ∅, i.e., we use only Dirichlet boundary conditions. The first
two examples are manufactured solution problems which prescribe the exact solution n(x), the
carrier drift velocity un = µnE, and the carrier diffusivity Dn. Substitution of the manufactured
solution, un and Dn into the governing equation (11) defines the boundary data g and the
recombination term R. The third example prescribes un, Dn, R and the boundary data g.

Example 1. In this problem n(x, y) = x3 − y2, the diffusivity Dn = 0.001, and the carrier drift
velocity un = (− sinπ/6, cosπ/6).
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Table I. Comparison of the L2-norm and H1-seminorm convergence rates of the SG-BIM, CVFEM-EFC
and CVFEM-SU methods.

CVFEM-EFC SG-BIM CVFEM-SU
Grid L2 error H1 error L2 error H1 error L2 error H1 error
32 0.437299E-02 0.762019E-01 0.436418E-02 0.757170E-01 0.576427E-02 0.102676E+00
64 0.210759E-02 0.495408E-01 0.210670E-02 0.493716E-01 0.271216E-02 0.635701E-01
128 0.986937E-03 0.308917E-01 0.986859E-03 0.308385E-01 0.116353E-02 0.351518E-01
Rate 1.095 0.681 1.094 0.679 1.221 0.854

Table II. L2-norm and H1-seminorm errors in the solution of Example 2 by CVFEM-EFC, SG-BIM and
CVFEM-SU on 64× 64 randomly perturbed, tensor product and smooth nonuniform grids.

Grid type Error norm CVFEM-EFC SG-BIM CVFEM-SU Error ratio: EFC/SU

O(h2) L2 0.8567792E-06 0.7912380E-04 0.1079382E-06 7.93
H1 0.1440925E-03 0.1317345E-01 0.1629788E-04 8.84

O(h) L2 0.4023762E-04 0.3711650E-02 0.4681861E-05 8.59
H1 0.6592671E-02 0.6050460E+00 0.7312294E-03 9.01

O(1) L2 0.2085444E-02 0.2272251E+00 0.1974453E-03 10.56
H1 0.3410112E+00 0.3648320E+02 0.3190555E-01 10.69

Tensor (γ = 0.1) L2 0.7016708E-02 0.7013024E-02 0.1341020E-03 52.32
H1 0.1105537E+00 0.1103145E+00 0.3398082E-02 32.53

Smooth (γ = 0.1) L2 0.5309802E-04 0.8282824E-01 0.1350436E-03 0.39
H1 0.6165610E-03 0.1414459E+01 0.2479903E-02 0.25

Smooth (γ = 0.5) L2 0.1264453E-02 0.3789502E+00 0.6498930E-03 1.94
H1 0.1573398E-01 0.1011258E+02 0.1119514E-01 1.40

Example 2. In this problem n(x, y) = x+ y and Dn and un are as in Example 1.

Example 3. In this problem Dn and un are as in Example 1,

R = 0 and g =

{
0 on ΓL ∪ ΓT ∪ (ΓB ∩ {x ≤ 0.5})
1 on ΓR ∪ (ΓB ∩ {x > 0.5}) . (47)

Discontinuity in the boundary data causes the solution to develop an internal layer of width
O(
√
Dn), while the homogeneous boundary condition on ΓT produces an exponential boundary

layer. This example specializes [10, Example 3.1.3, p.118] to the unit square.

5.1.3. Results The first part of the study compares the asymptotic convergence rates of the
CVFEM-EFC, SG-BIM and the benchmark CVFEM-SU. To estimate the rates we solve Example
1 on 32× 32, 64× 64 and 128× 128 uniform grids. The results in Table I confirm that all three
methods are first-order accurate. The table also shows nearly identical errors and convergence
rates for the CVFEM-EFC and SG-BIM. This suggests that on uniform grids the two methods are
essentially equivalent. Recall that for such grids the control volume mesh K ′h(Ω) is topologically
dual to Kh(Ω). We also note that the benchmark CVFEM-SU has slightly higher convergence rates
but larger errors.

The second part of the study compares the accuracy of the CVFEM-EFC and SG-BIM on five
different non-uniform grids. We use Example 2, which has linear solution. Both CVFEM-EFC and
SG-BIM are first-order accurate and won’t recover this exact solution. However, linearity makes it
easier to visualize the loss of accuracy in SG-BIM on non-topologically dual grids. The CVFEM-SU
again provides the benchmark solution.

Table II and Figures 7-8 summarize our results. On the tensor product grid we observe almost
identical errors in the CVFEM-EFC and SG-BIM solutions. This reprises the behavior of the two
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Figure 7. Approximation of a globally linear function by CVFEM-EFC (top row) and SG-BIM (bottom row)
on 64× 64 randomly perturbed grids. Left: O(h2) grid. Center: O(h) grid. Right: O(1) grid.

methods on uniform grids and is consistent with the fact that, as in the former case, the tensor
product grid has a topologically dual control volume grid.

The error ratios in Table II verify that on the randomly perturbed grids the accuracy of CVFEM-
EFC roughly matches the accuracy of the benchmark CVFEM-SU. On the O(h2) grid, which is
close to a uniform grid, the SG-BIM errors are two orders of magnitude greater but the solution is
still reasonably accurate. However, as the strength of the perturbation increases to O(h) and O(1)
the SG-BIM solution deteriorates to a point where the results on the O(1) grid are unusable; see
Fig. 7. The severity of the loss of accuracy in SG-BIM correlates with the severity of the loss of
topological duality on the O(h2), O(h) and O(1) grids.

Calculations on smooth non-uniform grids with γ = 0.1 and γ = 0.5 provide an example of a
more subtle loss of accuracy in the SG-BIM. As γ increases from 0.1 to 0.5, the loss of topological
duality between Kh(Ω) and K ′h(Ω) becomes more pronounced and the errors in the SG-BIM
solution grow accordingly; see Fig. 8. Yet, unlike the O(1) random grid case, there are no telltale
signs, such as spurious oscillations, to signal the loss of accuracy. Instead, the degradation of the
numerical solution manifests itself as a smooth mesh imprinting that is hard to detect without
knowledge of the exact solution. The error ratios in Table II again confirm that the CVFEM-EFC
solution is roughly of the same accuracy as the benchmark CVFEM-SU solution.

The final part of our study demonstrates some advantages stemming from the absence of tunable
stabilization parameters in the CVFEM-EFC. The constant advection test problem (47) provides an
appropriate setting for this task because it has both an internal and a boundary layer. The middle
plots in Fig. 9 show that the CVFEM-SU with the stabilization parameter (41) has significant
overshoots across both layers. However, simply increasing the strength of the stabilization term turns
out to be detrimental to the accuracy of the CVFEM-SU. The right plots in Fig. 9 correspond to (41)
scaled by a factor of 5 and confirm this. The extra diffusion does not fully eliminate the overshot
across the internal layer, but it smears significantly∗∗ the boundary layer. Clearly, the quality of the
CVFEM-SU solution depends critically on the choice of the stabilization parameter. Yet, optimal

∗∗A thorough discussion of this subject, including remedies such as discontinuity capturing, is beyond the scope of
this paper. We only mention the paper [14], which suggests an alternative definition of the stabilization parameter for
elements on the outflow Dirichlet boundary where the boundary layer develops.

Copyright c© 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2012)
Prepared using nmeauth.cls DOI: 10.1002/nme



18 P. BOCHEV AND K. PETERSON

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tensor grid smooth grid γ = 0.1 smooth grid γ = 0.5

Figure 8. Approximation of a globally linear function by CVFEM-EFC (top row) and SG-BIM (bottom row)
on 64× 64 structured nonuniform grids. Left: tensor product grid. Center: smooth grid with γ = 0.1. Right:

smooth grid with γ = 0.5.
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Figure 9. Comparison of CVFEM-EFC and CVFEM-SU solutions of the constant advection test problem
(47) on 33× 33 O(h) grid. Left: the CVFEM-EFC solution. Center: the CVFEM-SU with (41). Right:

CVFEM-SU with (41) scaled by 5.

selection of this parameter remains an open problem and can be different for different PDEs. In
contrast, the CVFEM-EFC formulation automatically adjusts to the solution features and performs
robustly without any additional calibration and/or adaptation to the problem being solved.
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5.2. MOSFET example

For a more realistic example we consider an n-channel metal-oxide semiconductor field-effect
transistor (MOSFET) device shown in Figure 10. A thin silicon dioxide layer (Ωox) adjacent to
the gate electrode and the main silicon body (Ωsi) form the MOSFET device structure. Within the
body where the source and drain terminals are connected there are highly doped regions with doping
concentrations Nd that differ from the doping concentration of the main body Na. For the device
modeled here, the silicon dioxide layer has a thickness of 50 nm and a length of 7 µm. The total
length of the MOSFET device is 8 µm and the height of the silicon region is 4 µm.

!"#$%&' ($)*+'
,)-&'

!#.!-$)-&'

'Nd 'Nd 

'Na 

'!ox 

'!si 

Figure 10. Configuration of an N-channel MOSFET device.

The governing equations for the n-channel MOSFET device consist of a Laplace equation for
electric potential (ψ) in the silicon dioxide layer, a Poisson equation for the electric potential in the
main body, and a continuity equation for the electron concentration (n) in the main body:

∇ · (ε0εox∇ψ) = 0 in Ωox

∇ · (ε0εsi∇ψ) = −q
(
ni exp

(
−qψ
kBT

)
− n+Nd −Na

)
in Ωsi

∇ · (nµn∇ψ −Dn∇n) = 0 in Ωsi

(48)

We refer to Table III for description of the parameters in the MOSFET model.

Parameter Value Description
ε0 8.854 ×10−12 Fm−1 vacuum permittivity
εsi 11.9 Silicon dielectric constant
εox 3.9 Silicon dioxide dielectric constant
kB 1.380 ×10−23 J/K Boltzmann constant
q -1.602 ×10−19 C electron charge
T 300 K temperature
µn 550 cm2/(V s) electron mobility
Dn µnkBT/q electron diffusivity
Nd 1.0× 1017 cm−3 doping concentration in doped regions
Na 1.0× 1015 cm−3 doping concentration in main silicon body
C0 1.0× 1015 cm−3 scaling parameter for n
µ0 550 cm2/(V s) scaling parameter for µn
V0 kBT/q scaling parameter for ψ
D0 µ0V0 scaling parameter for electron diffusivity

n̄source 100 scaled source boundary value
n̄drain 100 scaled drain boundary value

n̄substrate 2.1025×10−10 scaled substrate boundary value
Table III. Summary of parameters for n-channel MOSFET simulation
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To test the CVFEM-EFC it is not necessary to solve the coupled system (48). Instead, we use
Sandia’s device simulation code CHARON to run a fully coupled finite element simulation of
the governing equations to generate an approximation ψh of the electric potential in Ωsi. Figure
11 shows the scaled electric potential from the fully coupled simulation of (48). Treating this

Figure 11. Scaled electric potential used for solution of the electron continuity equation.

potential as an input for the electron continuity equation in the silicon region allows us to separate
this equation from the rest of the model, while suitable scaling improves its numerical properties.
Specifically, we set the scaled electron density to n̄ = n/C0 for C0 = 1.0× 1015, the scaled electron
mobility is µ̄n = µn/µ0 for µ0 = 550, the scaled electric potential is ψ̄h = ψh/V0 for V0 = kBT/q,
and the scaled electron diffusivity is D̄n = Dn/D0 for D0 = µ0V0. In summary, we apply the
CVFEM-EFC to solve the following scaled electron continuity equation

∇ · J̄n = 0 and J̄n = n̄µ̄n∇ψ̄h − D̄n∇n̄ in Ωsi. (49)

where µ̄n and D̄n are both equal to one. We impose the following (scaled) Dirichlet boundary
conditions for n̄

n̄source = Nd/C0 ; n̄drain = Nd/C0 ; n̄substrate =
n2
i

NaC0
.

At the silicon/silicon dioxide interface and at the boundaries without contacts we impose the
Neumann condition J̄n · n = 0.

The numerical simulation of (49) uses a partition Kh(Ω) of the MOSFET device (10) into
quadrilateral elements and the parameter values in Table III. The mesh is refined in the doped
regions, the silicon dioxide layer, and along the channel region as displayed in Figure 12. The
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Figure 12. Top row is the unstructured quadrilateral mesh for the n-channel MOSFET device. The bottom
row shows the grid refinement in the upper left and the upper right sections of the device.
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resulting grid is both highly non-uniform and logically non-rectangular, i.e., E(vi) does not equal 4
in all cases. In particular, Figure 12 shows that in the refined regions E(vi) varies between 3 and 6.
This represents an additional challenge for methods which rely on topological duality of the control
volumes.

To demonstrate this challenge we first solve (49) for the manufactured solution in Example 1.
Figure 13 shows that the CVFEM-EFC solution correctly represents the linear function despite the
highly unstructured nature of the grid in the upper left and right regions. In contrast, the SG-BIM
solution shows significant numerical errors. The strength of these errors correlates with the regions
where the grid deviates the most from a logically rectangular topology, i.e., where E(vi) 6= 4.

Test case: linear solution with constant advection, D = 0.01

Upper left corner detail of linear test case.
All figures plotted with same color scale.

Exact Solution CVFEM-EFC Results SG-BIM Results

Test case: linear solution with constant advection, D = 0.01

Upper left corner detail of linear test case.
All figures plotted with same color scale.

Exact Solution CVFEM-EFC Results SG-BIM Results

Test case: linear solution with constant advection, D = 0.01

Upper left corner detail of linear test case.
All figures plotted with same color scale.

Exact Solution CVFEM-EFC Results SG-BIM Results

Exact CVFEM-SG SG-BIM

Figure 13. Approximation of a globally linear function on the MOSFET grid. The plots show the exact
solution, the CVFEM-EFC solution and the SG-BIM solution in the upper left portion of the device.

Then we proceed to solve (49) using the approximate electric potential ψh in Figure 11 from
the fully coupled CHARON solution. Figure 14 shows the scaled electron density for the whole
domain resulting from the CVFEM-EFC simulation. The density is highest along the channel that

Figure 14. Scaled electron density for the n-channel MOSFET computed with the CVFEM-EFC shown over
the full device.

forms below the silicon dioxide layer and between the two doped regions. Figure 15 provides a more
detailed view of the structure of electron density near the source and drain doping regions.

These results agree qualitatively with the fully coupled CHARON solution. They also
demonstrate that CVFEM-EFC solution remains stable and is not affected adversely by the lack
of a logically rectangular grid structure or the large variations in element sizes in the grid.

6. CONCLUSIONS

We presented a new control volume finite element method for the drift-diffusion equations
(CVFEM-EFC). The new method combines the exceptional stability of the classical Scharfetter-
Gummel upwinding with the generality of CVFEM. On topologically dual grids the CVFEM-EFC
is essentially equivalent to the Scharfetter-Gummel Box Integration Method (SG-BIM). However,
computational studies in this paper conclusively demonstrate that topological duality of Kh(Ω) and
K ′h(Ω) is not necessary for the stability and accuracy of the CVFEM-EFC formulation. The new
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Figure 15. Scaled electron density for the n-channel MOSFET computed with the CVFEM-EFC shown over
a small section near the source doping region (left) and the drain doping region (right).

method performs robustly on all grids in the studies. Furthermore, the method adapts automatically
to different types of solution features and does not require heuristic stabilization parameters.

On the other hand, our study confirms that topological duality is a prerequisite for stable and
accurate SG-BIM solution. Without this property (23) fails to provide accurate approximation of the
control volume surface integrals. Moreover, violation of topological duality by the control volume
mesh K ′h(Ω) not only reduces the accuracy but may lead to unphysical solutions and spurious
oscillations.
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